Abstract

Gas flows generated by resonating nanoscale devices inherently occur in the non-continuum, low Mach number regime. Numerical simulations of such flows using the standard direct simulation Monte Carlo (DSMC) method are hindered by high statistical noise, which has motivated the development of several alternate Monte Carlo methods for low Mach number flows. Here, we present a frequency-domain low Mach number Monte Carlo method based on the Boltzmann–BGK equation, for the simulation of oscillatory gas flows. This circumvents the need for temporal simulations, as is currently required, and provides direct access to both amplitude and phase information using a pseudo-steady algorithm. The proposed method is validated for oscillatory Couette flow and the flow generated by an oscillating sphere. Good agreement is found with an existing time-domain method and accurate numerical solutions of the Boltzmann–BGK equation. Analysis of these simulations using a rigorous statistical approach shows that the frequency-domain method provides a significant improvement in computational speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.