Abstract

Cyclostationary processes exhibit a form of frequency diversity. Based on that, we show that a digital waveform with symbol period T can be asymptotically represented as a rank-1 frequency-domain vector process which exhibits uncorrelation at different frequencies inside the Nyquist spectral support of 1/T. By resorting to the fast Fourier transform (FFT), this formulation obviates the need of estimating a cumbersome covariance matrix to characterize the likelihood function. We then derive the generalized likelihood ratio test (GLRT) for the detection of a cyclostationary signal in unknown white noise without the need of a assuming a synchronized receiver. This provides a sound theoretical basis for the exploitation of the cyclostationary feature and highlights an explicit link with classical square timing recovery schemes, which appear implicitly in the core of the GLRT. Moreover, to avoid the well-known sensitivity of cyclostationary-based detection schemes to frequency-selective fading channels, a parametric channel model based on a lower bound on the coherence bandwidth is adopted and incorporated into the GLRT. By exploiting the rank-1 structure of small spectral covariance matrices, the obtained detector outperforms the classical spectral correlation magnitude detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.