Abstract

High speed long range millimetre-wave (mm-wave) links can be achieved by using wideband hybrid antenna arrays of sub-arrays. Due to the array architecture difference, conventional wideband angle-of-arrival (AoA) estimation and beamforming techniques are not applicable to such wideband hybrid arrays. Targeted at point-to-point line-of-sight wireless transmission in the 70/80 GHz E bands, a unified frequency-domain AoA estimation and beamforming algorithm suitable for large scale wideband hybrid arrays of both interleaved and side-by-side sub-arrays is proposed in this paper. The AoA estimation performance is analyzed by deriving a recursive modified Cramer-Rao bound (MCRB). The effect of mutual coupling among antenna elements on the estimation performance is also considered for the hybrid array of side-by-side sub-arrays. The analytical results can be used to determine system parameters according to required system specifications. Simulation results show that the proposed AoA estimation algorithm is robust against practical impairments, and the frequency dependency of the array pattern is significantly reduced after digital beamforming. Simulated mean square errors of AoA estimation are also compared with the analytical bounds, showing that the derived recursive MCRB provides a meaningful indication to the AoA estimation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.