Abstract

This paper develops micromechanics models to estimate the tensile and compressive elastic moduli of elastic solids containing randomly distributed penny-shaped microcracks. The crack faces are open under tension and closed under compression. When the crack faces are closed, they may slide against one another following Coulomb’s law of dry friction. The micromechanics models provide analytical expressions of the tensile and compressive moduli for both static and dynamic cases. It is found that the tensile and compressive moduli are different. Further, under dynamic loading, both compressive and tensile moduli are frequency dependent. As a by-product, the micromechanics models also predict wave attenuation in the dynamic case. Numerical simulations using the finite element method are conducted to validate the micromechanics models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.