Abstract

In this paper, a broadband equivalent node-to-node admittance functions (NAFs) model for shielded power cables are presented aiming at the direct time-domain simulation. The finite-element method is employed to obtain the frequency-dependent per-unit-length resistances, self- and mutual-inductances, and the self- and mutual-capacitances of the power cables. The matrix rational approximations are then applied to obtain the rational model (in pole-residue form) of the terminal admittance matrix of the multi-conductor transmission line (MTL) model. Next, the numerical stability of the rational model is guaranteed by the terminal (port) passivity enforcement technique. The circuit representation of the equivalent NAFs of the full cable with the length of interest can be synthesized based on the pole-residue description. It is validated by comparing the frequency response with the one computed by applying the original MTL model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.