Abstract
Traumatic brain injury (TBI) is a major health concern in children, as it can cause chronic cognitive and behavioral deficits. The lack of objective involuntary metrics for the diagnosis of TBI makes prognosis more challenging, especially in the pediatric context, in which children are often unable to articulate their symptoms. Resting state electroencephalograms (EEG), which are inexpensive and non-invasive, and do not require subjects to perform cognitive tasks, have not yet been used to create functional brain networks in relation to TBI in children or non-human animals; here we report the first such study. We recorded resting state EEG in awake piglets before and after TBI, from which we generated EEG functional networks from the alpha (8-12 Hz), beta (16.5-25 Hz), broad (1-35 Hz), delta (1-3.5 Hz), gamma (30-35 Hz), sigma (13-16 Hz), and theta (4-7.5 Hz) frequency bands. We hypothesize that mild TBI will induce persistent frequency-dependent changes in the 4-week-old piglet at acute and chronic time points. Hyperconnectivity was found in several frequency band networks after TBI. This study serves as proof of concept that the study of EEG functional networks in awake piglets may be useful for the development of diagnostic metrics for TBI in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.