Abstract
Full wavefield measurements obtained with either an air-coupled transducer mounted on a scanning stage or a scanning laser vibrometer can be combined with effective signal and imaging processing algorithms to support characterization of guided waves as well as detection, localization and quantification of structural damage. These wavefield images contain a wealth of information that clearly shows details of guided waves as they propagate outward from the source, reflect from specimen boundaries, and scatter from discontinuities within the structure. The analysis of weaker scattered waves is facilitated by the removal of source waves and the separation of wave modes, which is effectively achieved via frequency–wavenumber domain filtering in conjunction with the subsequent analysis of the resulting residual signals. Incident wave removal highlights the presence and the location of weak scatterers, while the separation of individual guided wave modes allows the characterization of their separate contribution to the scattered field and the evaluation of mode conversion phenomena. The effectiveness of these methods is demonstrated through their application to detection of a delamination in a composite plate and detection of a crack emanating from a hole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.