Abstract

Frequency warping is theoretically designed to be a unitary operator of infinite input and output dimensions, thus performing the resolution of identity. In real implementations finite dimensions have to be considered, then perfect reconstruction cannot be fulfilled. The accuracy of reconstruction is particularly compromised in case of non-smooth warping maps, which are more useful for practical applications. In order to overcome this limitation, a new frequency warping biorthogonal frame operator for non-smooth warping maps is introduced in this work. The proposed transformation is based on a mathematical model which has been previously introduced for computational purposes. By adding some redundancy with respect to the truncation of the infinite dimensions operator, the effect of an infinite output dimension can be taken into account in a compressed way, based on an analytical factorization. In the reconstruction process, the additional redundant samples are expanded, thus guaranteeing near perfect reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.