Abstract

AbstractCoupled fast mode resonances (cFMRs) in the outer magnetosphere, between the magnetopause and a turning point, are often invoked to explain observed discrete frequency field line resonances. We quantify their frequency variability, applying cFMR theory to a realistic magnetic field model and magnetospheric density profiles observed over almost half a solar cycle. Our calculations show that cFMRs are most likely around dawn, since the plasmaspheric plumes and extended plasmaspheres often found at noon and dusk can preclude their occurrence. The relative spread (median absolute deviation divided by the median) in eigenfrequencies is estimated to be 28%, 72%, and 55% at dawn, noon, and dusk, respectively, with the latter two chiefly due to density. Finally, at dawn we show that the observed bimodal density distribution results in bimodal cFMR frequencies, whereby the secondary peaks are consistent with the so‐called “CMS” frequencies that have previously been attributed to cFMRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call