Abstract
Terahertz logic gates will have a wide range of applications in future 6G communications. In this study, we theoretically propose a frequency-tunable all-optical terahertz logic gate composed of a silicon-metal composite metamaterial with a liquid crystal (LC) layer. Simulation results demonstrate the presence of electromagnetically induced transparency in the transmission spectrum of the device. Upon illumination, the transparency window in the transmission spectrum can be altered owing to the photoelectric effect in Si segments. The designed device can realize NOR Boolean operation based on the illumination-transmission response. More importantly, the LC layer with adjustable permittivity presents an effective method for manipulating the device’s working frequency. The influences of the LC layer’s thickness on the transparency window are also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.