Abstract

A graphene-based metamaterial (GMM) reflectarray antenna with frequency tunable radiation characteristics has been investigated in this study. The unit-cell element consists of graphene split-ring-resonator (SRR) with two gaps printed on a grounded SiO2 substrate. The electrical properties of the metamaterial unit-cell have been determined at different graphene chemical potentials and different SRR gaps using the waveguide simulator. The metamaterial unit-cell element introduces negative ɛ r and μ r over a wide frequency band starting from 390 to 550 GHz. A reflectarray unit-cell element based on the GMM is designed at different frequencies. The phase compensation of the reflected waves is achieved by changing the SRR gap width. Reflection coefficient phase variations for 0°–301° with a variable slope are obtained for different graphene conductivities. Three different 13 × 13 GMM reflectarrays are designed and analysed at different graphene chemical potentials. A maximum gain of 22.6, 19, and 21.5 dB with side lobe level (SLL) is 11.31/9.15, 10.98/5.31, and 7.31/8.45 dB in an E/H-plane for the reflectarray arrangements (I), (II) and (III), respectively. An averaging phase curve is calculated to construct a single structure GMM reflectarray with frequency tunable radiation characteristics. A maximum gain of 21.8 ± 1 dB with improved SLL of 13 dB was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.