Abstract

A Hidden Markov Model (HMM) is used to improve the robustness to noise when tracking the atrial fibrillation (AF) frequency in the ECG. Each frequency interval corresponds to a state in the HMM. Following QRST cancellation, a sequence of observed states is obtained from the residual ECG, using the short time Fourier transform. Based on the observed state sequence, the Viterbi algorithm, which uses a state transition matrix, an observation matrix and an initial state vector, is employed to obtain the optimal state sequence. The state transition matrix incorporates knowledge of intrinsic AF characteristics, e.g., frequency variability, while the observation matrix incorporates knowledge of the frequency estimation method and SNRs. An evaluation is performed using simulated AF signals where noise obtained from ECG recordings have been added at different SNR. The results show that the use of HMM considerably reduces the average RMS error associated with the frequency tracking: at 5 dB SNR the RMS error drops from 1.2 Hz to 0.2 Hz

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.