Abstract

With the emergence of unmanned marine robots, underwater communication systems have received much attention in recent years. To successfully develop radio wave based communication solutions, it is essential to understand properties of electromagnetic wave transmission in seawater. These properties are determined by the frequency variation of the permittivity of seawater. Existing models for the permittivity of saline water are empirical ones that best fit experimental data. We propose a physically realistic model, similar to the one used in plasma physics, for the variation of the dielectric constant of water with varying frequencies and salinities. Our model is in excellent agreement with existing empirical fits for frequencies between 1 and 256 GHz. We use this model to study the propagation of electromagnetic waves in seawater. We explain that large propagation distances would be possible at MHz frequencies if the conductivity of seawater decreases at small field strengths due to the hydrogen bonding of water molecules. However, we were unable to experimentally verify any reduction in the conductivity of seawater

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.