Abstract

Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 67.66 µs are obtained. By fitting the slope of the timing residuals affected by the faked frequency-biased reference clock, we estimated successfully the relative frequency deviation of the reference clock. For a satellite clock with frequency deviation of the order about 10−12, a calibration accuracy with relative error of about 2% can be obtained from the Crab pulsar’s data for one year. The stability of the time scale based on Crab pulsar is about 10−12 for an interval of one year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.