Abstract

A frequency-stabilized Brillouin random fiber laser (BRFL) realized by a self-inscribed transient population grating (TPG) is proposed and demonstrated for the first time, to the best of our knowledge. The TPG is formed via the redistribution of the population in erbium-doped fibers (EDFs) by bidirectionally injected phonon-controlled random laser beams. Long-lifetime metastable ion states in EDFs basically prolonged the time dynamics of a stimulated Brillouin scattering (SBS) laser up to milliseconds. Consequently, significant random modes are suppressed with low relative intensity noise, owing to reduced mode hopping in a Stokes random laser, hence one dominating lasing mode at milliseconds of lifetime is established from the competition of numerous random modes, which is proved theoretically and experimentally via TPG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call