Abstract

Ultrahigh resolution spectroscopy and metrology require very stable lasers with a high spectral purity. For spectroscopy with a resolution up to 1 kHz at 30 THz, the laser stabilization on a strong molecular absorption line detected in an external cell can provide a stability of a few Hz/mn and a linewidth of about 10 Hz. The development of a new stabilization scheme which acts separately on the short- and long-term stabilities is in progress. The stabilization on a peak of a high-finesses ULE Fabry-Perot cavity by using a piezoelectric transducer and an acousto-optic modulator should yield a laser linewidth of better than 1 Hz. Frequency locking on a molecular saturation line detected in transmission of another Fabry-Perot cavity can provide a long-term stability of a few Hertz on several hours. Such performances are required for spectroscopy with a resolution better than 100 Hz and for the realization of a new generation of frequency standards in the 10-micrometers spectral region based on a signal of a two-photon Ramsey fringes experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call