Abstract

Optical feedback from a high-finesse V-resonator, developed for this study, results in efficient coupling with an extended cavity diode laser, stabilizing its emission frequency and strongly decreasing the laser linewidth. This in turn enhances resonator output power, thus increasing the signal-to-noise ratio when used for the detection of gas phase species by absorption spectroscopy. This effect was directly measured by heterodyning two extended cavity diode lasers at a wavelength of 409 nm with and without the influence of optical feedback from a high-finesse V-resonator. The heterodyne signal of freely running lasers is composed of a set of sharp peaks whose envelope shows a width on the order of 4.5 MHz at a sweep rate of 80 MHz/0.8 s, leading to a laser linewidth of 3 MHz. Optical feedback from the high-finesse V-resonator reduces the heterodyne signal to a single peak with a mean width of 10 kHz, leading to a laser linewidth of 7 kHz. This is the lowest value of linewidth, reported thus far, for diode lasers operating in this wavelength region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.