Abstract

A laser stabilization scheme using magnetic dichroism in a RF plasma discharge is presented. This method has been used to provide a frequency stable external-cavity diode laser that is locked to the 4s[3/2](2) → 4p[5/2](3) argon laser cooling transition at 811.53 nm. Using saturated absorption spectroscopy, we lock the laser to a Doppler free peak which gave a locking range of 20 MHz when the slope of the error signal was maximized. The stability of the laser was characterized by determining the square root Allan variance of laser frequency fluctuations when the laser was locked. A stability of 129 kHz was measured at 1 s averaging time for data acquired over 6000 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.