Abstract

Carrier-envelope-offset (CEO) and pulse-repetition frequencies of a Ti:sapphire-pumped femtosecond optical parametric oscillator were locked to uncertainties of 0.09 Hz and 0.16 mHz respectively, with the CEO beat signal linewidth being stabilized to 15 Hz (instrument limited). In-loop phase-noise power spectral density measurements showed a contribution of our servo electronics to the comb-line frequency uncertainty of up to 110 Hz. Complementary time-series data implied an in-loop comb instability of 2 x 10(-11) (1-s gate time), matching the Rb-stabilized reference used and verifying that dual servo-control of the CEO and repetition frequencies was effective in stabilizing the comb to at least this precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.