Abstract

We report results of frequency stability measurements of an extended cavity diode laser (ECDL) whose frequency is stabilized by a non-evacuated scanning transfer cavity. The transfer cavity is locked to a commercial frequency stabilized helium–neon laser. Frequency stability is measured by use of an optical frequency comb. The environmental perturbations (variations of temperature, air pressure, and humidity) are also simultaneously measured. The observed frequency drift of the ECDL is well explained by environmental perturbations. An atmospheric pressure variation, which is difficult to control with a non-evacuated cavity, is mainly affected to the frequency stability. Thus we put the cavity into a simple O-ring sealed (non-evacuated) tube. With this simple O-ring sealed tube, the frequency drift is reduced by a factor of 3, and the Allan variance reaches a value of 2.4×10−10, corresponds to the frequency stability of 83 kHz, at the average time of 3000 s. Since the actual frequency drift is well estimated by simultaneous measurement of the ambient temperature, pressure, and humidity, a feed-forward compensation of frequency drifts is also feasible in order to achieve a higher frequency stability with a simple non-evacuated transfer cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.