Abstract

We quantified frequency-specific, absolute, and fractional amplitude of low-frequency fluctuations (ALFF/fALFF) across the schizophrenia (SZ)-psychotic bipolar disorder (PBP) psychosis spectrum using resting functional magnetic resonance imaging data from the large BSNIP family study. We assessed 242 healthy controls (HC), 547 probands (180 PBP, 220 SZ, and 147 schizoaffective disorder-SAD), and 410 of their first-degree relatives (134 PBPR, 150SZR, and 126 SADR). Following standard preprocessing in statistical parametric mapping (SPM8), we computed absolute and fractional power (ALFF/fALFF) in 2 low-frequency bands: slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz). We evaluated voxelwise post hoc differences across traditional Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition diagnostic categories. Across ALFF/fALFF, in contrast to HC, BP/SAD showed hypoactivation in frontal/anterior brain regions in the slow-5 band and hypoactivation in posterior brain regions in the slow-4 band. SZ showed consistent hypoactivation in precuneus/cuneus and posterior cingulate across both bands and indices. Increased ALFF/fALFF was noted predominantly in deep subcortical and temporal structures across probands in both bands and indices. Across probands, spatial ALFF/fALFF differences in SAD resembled PBP more than SZ. None of these ALFF/fALFF differences were detected in relatives. Results suggest ALFF/fALFF is a putative biomarker rather than a familial endophenotype. Overall sensitivity to discriminate proband brain alteration was stronger for fALFF than ALFF. Patterns of differences noted in SAD were more similar to those observed in PBP. Differential effects were noted across the 2 frequency bands, more prominently for BP/SAD compared with SZ, suggesting frequency-sensitive physiologic mechanisms for the former.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call