Abstract

BackgroundUnder natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random) under auditory focused attention by means of magnetoencephalography (MEG).ResultsIn total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands.ConclusionThe present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

Highlights

  • IntroductionAttention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises

  • Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises

  • Identifiable averaged auditory evoked fields were obtained from all subjects

Read more

Summary

Introduction

Attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. Humans can effortlessly process task-relevant sound signals despite the usual presence of concurrent noises, which are often task-irrelevant. Recent magnetoencephalography (MEG) [1] and electroencephalography (EEG) [2,3] studies revealed that auditory focused attention amplifies task-relevant ('gain'), but crucially suppresses task-irrelevant neural activity ('sharpening') in human auditory cortex. Top-down auditory focused attention can amplify and sharpen neural activity in human auditory cortex, it is still unsettled whether these attentional effects depend on the specific location of neurons within the tonotopic maps. Psychoacoustic studies indicated that frequency-specific auditory attention sharpens the tuning for an attended relative to an unattended frequency (Figure 1A), as was reflected in a detection advantage for the former compared to the latter [16,17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call