Abstract

BackgroundTraditionally, the diagnosis of Parkinson’s disease (PD) has been made based on symptoms. Extensive studies have demonstrated that PD may lead to variation of brain activity in different frequency bands. However, frequency specific dynamic alterations of PD have not yet been explored. New methodIn order to address this gap, a novel sparse nonnegative tensor decomposition (SNTD) method was used to estimate frequency specific co-activation patterns (CAP). The difference between PD and healthy controls (HC) are investigated with the proposed framework. ResultThe difference between PD and HC mainly exists at frequency band 0.04–0.1 Hz in basal ganglia. We also found that the average intensity of PD in this frequency band is significantly correlated with the Hoehn and Yahr scale. Comparison with existing methodsCompared with conventional CAP approach, SNTD estimates frequency specific CAPs that show alterations in PD patients. ConclusionSNTD provides an alternative to K-means clustering used in conventional CAP analysis. With the proposed framework, frequency specific CAPs are extracted, and alterations in PD patients are also successfully discovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.