Abstract

Background:Previous studies have indicated that the cognitive deficits in patients with Alzheimer's disease (AD) may be due to topological deteriorations of the brain network. However, whether the selection of a specific frequency band could impact the topological properties is still not clear. Our hypothesis is that the topological properties of AD patients are also frequency-specific.Methods:Resting state functional magnetic resonance imaging data from 10 right-handed moderate AD patients (mean age: 64.3 years; mean mini mental state examination [MMSE]: 18.0) and 10 age and gender-matched healthy controls (mean age: 63.6 years; mean MMSE: 28.2) were enrolled in this study. The global efficiency, the clustering coefficient (CC), the characteristic path length (CpL), and “small-world” property were calculated in a wide range of thresholds and averaged within each group, at three different frequency bands (0.01–0.06 Hz, 0.06–0.11 Hz, and 0.11–0.25 Hz).Results:At lower-frequency bands (0.01–0.06 Hz, 0.06–0.11 Hz), the global efficiency, the CC and the “small-world” properties of AD patients decreased compared to controls. While at higher-frequency bands (0.11–0.25 Hz), the CpL was much longer, and the “small-world” property was disrupted in AD, particularly at a higher threshold. The topological properties changed with different frequency bands, suggesting the existence of disrupted global and local functional organization associated with AD.Conclusions:This study demonstrates that the topological alterations of large-scale functional brain networks in AD patients are frequency dependent, thus providing fundamental support for optimal frequency selection in future related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.