Abstract

The frequency–energy distribution of global seismicity is studied using broad-band radiated energy of shallow earthquakes from January 1987 to December 1994 estimated by NEIC. Rank-ordering statistics are applied to enhance the resolution in retrieving the power-law distribution with undersampled data, namely a few tens of events. Seen in the perspective of broad-band radiated energy with higher resolution, a single (Gutenberg–Richter-type) power-law distribution can fit the data. For earthquakes with energy larger than 1014 J, the number N of events with energy E depends on E via N∝E−B, with the scaling constant B = 0.64 ± 0.04, corresponding to b = 0.95 ± 0.06. This relation is different from that of scalar seismic moment, which shows a transition of power-law distributions between small and large earthquakes. To demonstrate such a difference we use the same set of earthquakes with both broad-band energy estimation and CMT estimation. It is found that for the same data set, the energy distribution and the moment distribution show different patterns. The moment distribution has a clear kink between small and large earthquakes, while the energy distribution shows a single power law with no convincing kink between small and large earthquakes. To investigate the effect of different focal mechanisms and different seismic regions, events with strike-slip mechanisms and events within the Japan–Kuril region are considered. For these subsets of events, a similar pattern exists, in which the moment distribution shows a kink between small and large earthquakes, while the energy distribution shows a single power law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.