Abstract

The frequency shifts of the vibrational and rotational transitions of ${\mathrm{H}}_{2}$, ${\mathrm{D}}_{2}$, and HD molecules trapped in solid Ar are calculated at zero temperature and at pressures 0\ensuremath{\le}P\ensuremath{\le}373 kbar. It is found that the pure vibrational and rotational-vibrational transition frequencies are strongly red-shifted in the solid at P=0, compared to gas-phase values, and the agreement with Raman scattering measurements is generally good. The calculated pure rotational transitions also show a small red shift at P=0 in the solid and are in generally good agreement with the measurements of Jodl and Bier, but less so with those of Prochaska and Andrews, who, except for ${\mathrm{D}}_{2}$(Ar), measure small blue shifts. The calculated local-mode frequencies of the impurity molecules in the solid at P=0 are also in good agreement with experiment, especially when thermal corrections are considered. With increasing pressure all transition frequencies and the local-mode frequencies are strongly blue-shifted with respect to P=0 solid values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.