Abstract

Increasing evidence of the effects of changing climate on physical ocean conditions and long-term changes in fish populations adds to the need to understand the effects of stochastic forcing on marine populations. Cohort resonance is of particular interest because it involves selective sensitivity to specific time scales of environmental variability, including that of mean age of reproduction, and, more importantly, very low frequencies (i.e., trends). We present an age-structured model for two Pacific salmon species with environmental variability in survival rate and in individual growth rate, hence spawning age distribution. We use computed frequency response curves and analysis of the linearized dynamics to obtain two main results. First, the frequency response of the population is affected by the life history stage at which variability affects the population; varying growth rate tends to excite periodic resonance in age structure, while varying survival tends to excite low frequency fluctuation with more effect on total population size. Second, decreasing adult survival strengthens the cohort resonance effect at all frequencies, a finding that addresses the question of how fishing and climate change will interact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.