Abstract

In anaesthetized or decerebrate cats, motor axons in lumbosacral ventral roots or hindlimb muscle nerves were stimulated with random trains of brief electrical pulses, and Renshaw cell spike sequences were recorded. Spectral analysis was used to determine the range of linear operation of Renshaw cells, via coherence computations, and to calculate their frequency-dependent gains and phases. The analysis showed that the dynamic behaviour of Renshaw cells was different for different strengths of their synaptic input from motor axons and for different mean stimulus rates. In general, the changes in dynamics associated with variation of these two input parameters followed a common trend. This can be related to the average response of Renshaw cells per stimulus, as assessed by peri-stimulus time histograms. For axons having a strong excitatory effect on a Renshaw cell (as judged from the size of early peri-stimulus time histogram peaks), and for low mean stimulus rates (10–23 pulses per second), the linear range of signal transmission (assessed by coherence computation) was usually very broad (from zero sometimes up to over 100 Hz, but mostly up to 50–100 Hz). Following an initial elevation in the range 2–15 Hz, the gain showed first a rapid decrease with frequency, down to a value which at 30–50 Hz could be a tenth of the gain at lower frequencies (2–15 Hz); it then continued to decline slowly. Otherwise the linear range was narrower and/or the coherence was generally lower; the gain was lower and showed little decline with frequency. The phase curves of Renshaw cells generally showed a low-frequency phase lead (up to roughly 10 Hz) and an increasing phase lag thereabove that was generated in part by the conduction delay. The results show that Renshaw cells can follow, particularly sensitively, inputs in a frequency range encompassing the steady firing rates of many α-motoneurons. This range of high gain also covers that of a component of physiological tremor ( ca. 6–12 Hz), a basic mechanism of which is probably related to unfused contractions of newly recruited motor units firing in this range. It can therefore be expected that recurrent inhibition via Renshaw cells is especially powerful in this physiologically important range of α-motoneuron firing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.