Abstract

Numerical procedure for the forced vibration analysis of bottom and vertical rectangular plate structures in contact with fluid, subjected to internal point harmonic excitation force is developed. The procedure is based on the assumed mode method for free vibration calculation and mode superposition method for forced vibration analysis. Structural model covers Mindlin rectangular plates and stiffened panels. Lagrange's equation of motion is utilized to formulate the eigenvalue problem taking into account potential and kinetic energies of a plate and reinforcements, and fluid kinetic energy which is calculated according to potential flow theory, respectively. From the boundary conditions for the fluid and structure the fluid velocity potential is derived and it is utilized for the calculation of added mass using the assumed modes. The developed theoretical model and in-house code are verified with extensive numerical examples related to forced vibration of bare plates and stiffened panels in contact with different fluid domains. Comparisons of the results with those obtained by a general purpose finite element (FE) software confirmed high accuracy of the presented numerical procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call