Abstract
Citrus mechanical harvesting has been investigated since the 1960's. Even though mechanical harvesting could significantly lower production costs, the implementation by the private sector has been slow. The current harvesting technologies detach the fruits with trunk, canopy or branch vibration. For late-season sweet orange varieties which simultaneously bear mature fruit, immature fruitlets and flowers, shaker harvesting decreases the subsequent year's yield. This study, investigated the frequency response of mature fruits and immature fruitlets to determine the optimum frequency range for an efficient and selective harvest. Laboratory vibration transmission tests were conducted with 14 branches bearing 76 mature fruits and 151 immature ‘Valencia’ fruitlets. The fruit and branch response to the forced vibration was measured by several sets of five triaxial accelerometers with a dynamic signal analyser. Three frequency ranges with the highest vibration transmission values were identified for mechanical harvesting lower than 10 Hz. The first frequency range (1.5–2.5 Hz) corresponded best with the most efficient vibration transmission, involving more than 90% of fruit. The second frequency range (4.5–5 Hz) successfully discriminated between mature fruit and immature fruitlets. In this frequency range, 53.4% of mature fruit amplified the acceleration a mean value of 2.2 times, while only 7.3% of immature fruitlets amplified the acceleration with a mean value of 4.4 times. The third frequency range (7–8 Hz) had the lowest vibration transmission value. The frequency response of mature citrus fruits, and their markedly higher fruit mass, were significant factors in efficient selective mechanical harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.