Abstract

A synthetic jet results from periodic oscillations of a diaphragm in a cavity. We present the results of a detailed experimental investigation wherein the effect of excitation frequency on the synthetic jet flow is studied for cavities of different depths and for orifices of different diameters. The exit velocity averaged over an excitation cycle indicates a lower and an upper bound on the frequency for the formation of a jet, and shows resonance at two frequencies. The resonant frequencies have been identified as being close to the diaphragm and the Helmholtz frequencies, with the former being more important in the present set of experiments. We discuss approaches to manipulate these frequencies from the point of view of cavity design. Interestingly, the input power is found to be at a minimum at the diaphragm frequency. Our measurements over a relatively large parameter domain suggest that the turbulence intensity in the near field is independent of the cavity depth and excitation frequency, but depends on the orifice diameter. These results are expected to be useful for designing synthetic jet cavity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.