Abstract

The study of infrasound is experiencing a renaissance since it was chosen as a verification technique for the Comprehensive Nuclear-Test-Ban Treaty. Source identification is one of the main topics of research which involves detailed knowledge on the source time function, the atmosphere as medium of propagation, and the measurement system. Applications are also foreseen in using infrasound as passive probe for the upper atmosphere, taking the field beyond its monitoring application. Infrasound can be conveniently measured with differential microbarometers. An accurate description of the instrument response is an essential need to be able to attribute the recorded infrasound to a certain source or atmospheric properties. In this article, a detailed treatment is given of the response of a differential microbarometer to acoustic signals. After an historical introduction, a basic model for the frequency response is derived with its corresponding poles and zeros. The results are explained using electric analogs. In addition, thermal conduction is added to the model in order to capture the transition between adiabatic and isothermal behavior. Also discussed are high-frequency effects and the effect of external temperature variations. Eventually, the design parameters for differential microbarometers are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.