Abstract
We report a driven-dissipative mechanism to generate stationary entangled W states among strongly interacting quantum emitters placed within a cavity. Driving the ensemble into the highest energy state-whether coherently or incoherently-enables a subsequent cavity-enhanced decay into an entangled steady state consisting of a single deexcitation shared coherently among all emitters, i.e., a W state, well known for its robustness against qubit loss. The nonharmonic energy structure of the interacting ensemble allows this transition to be resonantly selected by the cavity, while quenching subsequent off-resonant decays. Evidence of this purely dissipative mechanism should be observable in state-of-the-art cavity QED systems in the solid state, enabling new prospects for the scalable stabilization of quantum states in dissipative quantum platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.