Abstract

Super conducting magnetic energy storage (SMES) may improve the Frequency stability of a system, because of its fast response time in charging and discharging energy. This paper proposed the modelling and control of a hybrid solar photo voltaic, wind energy, Diesel-Engine Generator (DEG) and Superconducting Magnetic Energy Storage systems connected to an isolated power system. Due to random variations of wind speed, output power of wind generator fluctuates randomly. Also solar irradiance and temperature variation causes the variation of solar PV output power. This causes fluctuations of power system frequency and thus affects the stability of the system. Due to the intermittent nature of power output from renewable sources, they are integrated along with different energy storage systems. In this project SMES is proposed for minimization of frequency fluctuations of hybrid system. The control scheme of SMES is based on a sinusoidal pulse width-modulation voltage-source converter and a two-quadrant dc-dc chopper using an insulated-gate bipolar transistor. This project analyses the effect of superconducting magnetic energy storage (SMES) to improve the stability of an isolated hybrid system under varying atmospheric conditions. Simulation results indicate that SMES system can contribute to frequency stability when supply demand imbalance occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call