Abstract
Progress in vehicle-to-grid technology opens market for electric vehicle (EV) users to participate in the emergency reliability services, such as frequency regulation (FR). EVs can be considered as a mobile energy storage, which has the potential to compensate the uncontracted power if the contracts between the market players are breached. As all the EVs will be penetrated to the distribution network, distribution power loss along with the power limit of transformer and lines must be incorporated in the EV model. In this paper, the accuracy of conventional EV model is improved by introducing distributed network characteristics to participate in FR under deregulated environment in the presence of diverse transmission links such as ac/dc links. Fractional order plus proportional plus integral plus derivative (FOPID) controller also abbreviated as PI λ D μ controller is used for coordinated control of conventional units and EVs. Flower pollination algorithm is employed to choose the controller parameters under different scenarios. Extensive simulations have been performed to validate the superiority of the proposed control strategy. Obtained results strongly suggest that FOPID controller is far superior to conventional PID controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.