Abstract

Frequency stability in power systems is a key driver for the maintenance of supply quality. Thermal loads, if properly managed, can play an important role in providing support to the frequency regulation. In this framework, the paper presents a control strategy to enable a load aggregator to manage a set of building cooling systems to contribute both to primary and secondary regulation. The proposed strategy uses the Model Predictive Control approach. Frequency support is provided without compromising the natural mission of the controlled loads, i.e., the end-user thermal comfort. The introduced method is tested by means of software-in-the-loop simulation studies. The implemented testing framework emulates real-time operation of a building aggregate within a benchmark network with high penetration of wind generation. Results show the ability of the control algorithm to optimally coordinate the contribution of thermal loads both to primary and secondary frequency regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.