Abstract

This work presents an analysis on frequency planning and synthesis for multiband (MB) orthogonal frequency-division multiplexing (OFDM) ultra-wideband (UWB) radios operating in the range of 3.1-10.6 GHz. The most important specifications for the frequency synthesizer in an MB-OFDM UWB transceiver are provided. A synthesizer architecture for an existing frequency plan is introduced along with a discussion on its performance and implementation. An alternative frequency plan and its corresponding synthesizer architecture are also proposed. It is shown how this modified frequency plan leads to a significant simplification in the synthesizer realization. The feasible performance of both synthesizer architectures is evaluated through macromodel simulations using realistic models for the building blocks. Finally, system-level simulation results showing the impact of synthesizer spurs on the bit error rate performance of an MB-OFDM UWB receiver in the presence of interferers are provided. The presented results and discussion provide valuable insight for the implementation of a 3.1-10.6-GHz UWB synthesizer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call