Abstract

This work addresses the issue of interference generated by co-channel users in downlink multi-antenna multicarrier systems with frequency-packed faster-than-Nyquist (FTN) signaling. The resulting interference stems from an aggressive strategy for enhancing the throughput via frequency reuse across different users and the squeezing of signals in the time-frequency plane beyond the Nyquist limit. The spectral efficiency is proved to be increasing with the frequency packing and FTN acceleration factors. The lower bound for the FTN sampling period that guarantees information losslesness is derived as a function of the transmitting-filter roll-off factor, the frequency-packing factor, and the number of subcarriers. Space-time-frequency symbol-level precoders (SLPs) that trade off constructive and destructive interblock interference (IBI) at the single-antenna user terminals are proposed. Redundant elements are added as guard interval to cope with vestigial destructive IBI effects. The proposals can handle channels with delay spread longer than the multicarrier-symbol duration. The receiver architecture is simple, for it does not require digital multicarrier demodulation. Simulations indicate that the proposed SLP outperforms zero-forcing precoding and achieves a target balance between spectral and energy efficiencies by controlling the amount of added redundancy from zero (full IBI) to half (destructive IBI-free) the group delay of the equivalent channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.