Abstract
Several independent sets of field data have been analyzed in order to estimate the frequency of sediment movement on the continental shelf off Washington over an annual period and to identify the major components of the bottom velocity field causing this motion. Sediment motions resulting from: (1) bottom currents caused by surface wind stress and tides, and (2) wave-induced oscillatory bottom currents have been investigated. Analysis of a 260-day current record from 3 m off the seabed at 80 m depth on the continental shelf and a 205-day open-ocean wave record collected on Cobb Seamount 465 km west of the Washington coast suggest that the threshold of sediment motion was exceeded for approximately 22 days per year as a result of mean currents (20 min time averaged) and approximately 53 days per year from wave-induced oscillatory currents. Substantial variations can be expected from year to year, so these values represent order of magnitude estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Marine Geology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.