Abstract

In this Letter, dual-wavelength-injection period-one (P1) laser dynamics is proposed for the first time, to the best of our knowledge, to generate frequency-modulated microwave signals. By injecting light with two different wavelengths into a slave laser to excite P1 dynamics, the P1 oscillation frequency can be modulated without external control of the optical injection strength. The system is compact and stable. The frequency and bandwidth of the generated microwave signals can be easily adjusted by tuning the injection parameters. Through both simulations and experiments, the properties of the proposed dual-wavelength injection P1 oscillation are revealed, and the feasibility of the frequency-modulated microwave signal generation is verified. We believe that the proposed dual-wavelength injection P1 oscillation is an extension of laser dynamics theory, and the signal generation method is a promising solution for generating broadband frequency-modulated signals with good tunability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.