Abstract

This paper presents an extrinsic Fabry-Perot (F-P) cavity optical fiber temperature sensor, which is based on the frequency-modulated continuous-wave laser interference. The temperature sensing probe is fabricated by a stainless-steel tube with high coefficient of thermal expansion to encapsulate the F-P cavity. Stainless steel tube is used as the F-P cavity and also the temperature sensitive component. The variation of cavity length caused by thermal expansion of F-P cavity is measured by frequency-modulated continuous-wave interferometric measurement technique. The experimental results show that the temperature measurement resolution of the fiber temperature sensor reached 0.0002 ℃ and the temperature measurement sensitivity reached 3022 nm/℃. The temperature sensor not only has high sensitivity and resolution, but also has a simple and stable structure and a good application prospect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.