Abstract
The compatibility of broadband electromagnetic absorption and electromagnetic damage tolerance poses challenges to the regulation of electromagnetic response characteristics, which are typically restricted by the intrinsic dispersion of materials and strong resonant features of unit cell structures. In this work, triply-periodic-minimal-surfaces (TPMS) based gradient core-shell sandwich structure is proposed to address this challenge for its mathematical defined unique conductive pore structure. The reflection loss-frequency curve is less than −10 dB in 2–18 GHz frequency band, accompanied by two separate resonant absorption peaks at 2.4 GHz and 17.5 GHz. The reflection loss curve is insensitive to frequency in a wide frequency band of 4–14 GHz, using merely three kinds of absorbing materials. When the damage proportion is less than 40 %, effective electromagnetic absorption can be maintained in panel damage, core damage and penetrating damage modes, thanks to the extraordinary conduction-dissipation effect. Our study provides valuable insights for the design of damage tolerant electromagnetic absorption structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.