Abstract

Noncooperation frequency-hopping (FH) transmitter fingerprint feature classification is a significant but challenging issue for FH transmitter recognition, since not only is it sensitive to noise but also it has the nonlinear, non-Gaussian and nonstability characteristics, which make it difficult to guarantee the classification in the original signal space. To address these problems, a method of frequency-hopping transmitter fingerprint feature classification based on kernel collaborative representation classifier is proposed in this paper. First, the noise suppression pretreatment of the FH transmitter signal is carried out by using the wave atoms frame method. Then, the nuances of the FH transmitters in the feature space are characterized by the surrounding-line integral bispectra features. And finally, incorporating the kernel function, a classifier which can generalize a linear algorithm to nonlinear counterpart is constructed for the final transmitter fingerprint feature classification. Extensive experiments on real-world FH transmitter “turn-on” transient signals demonstrate the robust classification of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.