Abstract

Pulse position modulation (PPM) has been used in the radio-frequency (RF) domain to achieve both low-dissipation requirements and provide precision ranging. In ultrawideband (UWB) architectures, it underpins an asynchronous receiver, multiple access environments, and interference-resistant transmission. When combined with frequency hopping (FH), it allows for an additional level of immunity to jamming and low probability of intercept. Realization of a FH-PPM transceiver poses a practical challenge, particularly in the UWB RF range. With UWB pulses reaching the multi-gigahertz range, FH adds to the effective bandwidth at which the receiver must be operated, exceeding the performance of a modern quantizer and digital demodulation backplane. This study describes a new photonics-assisted FH-PPM receiver architecture that rests on mutually coherent frequency combs. The performance of the new receiver was characterized by receiving and decoding an 80–Mb/s rate FH-PPM UWB signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.