Abstract
Smart grid is a modern infrastructure for improving the efficiency and reliability of power grid by integrating automated control, sensing and metering technologies, modern communication infrastructure and modern energy management techniques. Security and quality-of-service (QoS) are two most critical requirements for the communications network in smart grid. Frequency hopping (FH) technology, due to its inherent security, is a promising candidate technology in the physical layer of smart gird communication infrastructure. Unfortunately, all the existing FH systems can support only a single level of QoS due to the fact that traditional FH sequence sets can provide the same level of Hamming cross-correlation. In this paper, an FH-based communication network is developed for smart grid, particularly the advanced smart metering (AMI), to address the above two key challenges. A novel type of FH sequence set which meets the multi-level QoS requirement is designed. Then, the data traffic in AMI is investigated and modeled as a general Poisson process which is validated by real measurements of power consumptions. With the proposed sequence set and data model, the analytic performance in terms of error probabilities for the proposed FH communication with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$M$</tex></formula> -ary frequency-shift keying (FSK) modulation is derived for a slow Rayleigh fading channel. The analytic results are validated by numerical simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.