Abstract

Coronal radio-sounding experiments were carried out using two-way coherent dual-frequency carrier signals of the ESA spacecraft ROSETTA in 2010 and MARS EXPRESS in 2010/2011. Differential frequency measurements recorded at both NASA and ESA tracking stations (sample rate: 1Hz) are analyzed in this paper. Spectral analysis of the S-band, X-band, and differential frequency records has shown that the r.m.s. frequency fluctuation of each signal can be described by a radial power-law function of the form σi=Ai(R/R⊙)−βi, where i=s, x, sx. The ratio of the coefficients As and Ax differs from the expected theoretical value As/Ax=fs/fx. This occurs because the X-band fluctuations underlie two-way propagation conditions while the S-band fluctuations are essentially the product of a one-way propagation experiment. The intensity of the frequency fluctuations decreases sharply at high heliolatitudes. The asymmetry of the frequency fluctuation intensity between ingress and egress is exploited to determine the solar wind speed at small heliocentric distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.