Abstract

The discretisation of boundary integral equations for the scalar Helmholtz equation leads to large dense linear systems. Efficient boundary element methods (BEM), such as the fast multipole method (FMM) and H-matrix based methods, focus on structured low-rank approximations of subblocks in these systems. It is known that the ranks of these subblocks increase with the wavenumber. We explore a data-sparse representation of BEM-matrices valid for a range of frequencies, based on extracting the known phase of the Green's function. Algebraically, this leads to a Hadamard product of a frequency matrix with an H-matrix. We show that the frequency dependency of this H-matrix can be determined using a small number of frequency samples, even for geometrically complex three-dimensional scattering obstacles. We describe an efficient construction of the representation by combining adaptive cross approximation with adaptive rational approximation in the continuous frequency dimension. We show that our data-sparse representation allows to efficiently sample the full BEM-matrix at any given frequency, and as such it may be useful as part of an efficient sweeping routine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.