Abstract
A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia, in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.