Abstract

Entangled multi-qubit states are an essential resource for quantum information and computation. Solid-state emitters can mediate interactions between subsequently emitted photons via their spin, thus offering a route towards generating entangled multi-photon states. However, existing schemes typically rely on the incoherent emission of single photons and suffer from severe practical limitations, for self-assembled quantum dots most notably the limited spin coherence time due to Overhauser magnetic field fluctuations. We here propose an alternative approach of employing spin-flip Raman scattering events of self-assembled quantum dots in Voigt geometry. We argue that weakly driven hole spins constitute a promising platform for the practical generation of frequency-entangled photonic cluster states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call