Abstract

We report on frequency-doubling characteristics of high-power, ultrafast optical vortex beams in a nonlinear medium. Based on single-pass second-harmonic generation (SHG) of optical vortices in 1.2 mm long bismuth triborate (BIBO) crystal, we studied the effect of different parameters influencing the SHG process in generating high-power and higher-order vortices. We observed a decrease in SHG efficiency with the order, which can be attributed to the increase of the vortex beam area with order. Like a Gaussian beam, optical vortices show focusing-dependent conversion efficiency. However, under similar experimental conditions, the optimum focusing condition for optical vortices is reached at tighter focusing with orders. We observed higher angular acceptance bandwidth in the case of optical vortices than that of a Gaussian beam; however, there is no substantial change in angular acceptance bandwidth with vortex order. We also observed that in the frequency-doubling process, the topological charge has negligible or no effect in temporal and spectral properties of the beams. We have generated ultrafast vortices at 532 nm with power as much as 900 mW and order as high as 12. In addition, we have devised a novel scheme based on linear optical elements to double the order of any optical vortex at the same wavelength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.